If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4.9H^2+588.1H+1.2
We move all terms to the left:
-(4.9H^2+588.1H+1.2)=0
We get rid of parentheses
-4.9H^2-588.1H-1.2=0
a = -4.9; b = -588.1; c = -1.2;
Δ = b2-4ac
Δ = -588.12-4·(-4.9)·(-1.2)
Δ = 345838.09
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-588.1)-\sqrt{345838.09}}{2*-4.9}=\frac{588.1-\sqrt{345838.09}}{-9.8} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-588.1)+\sqrt{345838.09}}{2*-4.9}=\frac{588.1+\sqrt{345838.09}}{-9.8} $
| -30-18=f | | 21.50x+24=17.25x+41 | | x+45=2x | | -3(x-14)=-45 | | 3+3x=171 | | 4b+7=b−26 | | 314=n+567 | | 6+0.10x=0.15x+8* | | 2x-4(x-2)=-7+2x-5 | | 4x-12=24-5x | | -6•d=-42 | | -74+11=r | | 4x=2x+2x=5(x-x) | | 39.99+.45p=44.99+.40p | | 1/3h=10 | | 7x+5(x-7)=-11+6x | | 12d=114 | | q/5+5=18 | | 10x4x=100 | | 7y+8=6y-34 | | 8v+5(v+3)=12 | | 3(2x+9)=-29+39 | | 39.99+.45p=44.99+.40 | | (5x)+95+40=180 | | 100-30m=50m | | 54/(-9)=d | | m−14=−13 | | 7/10v+32=2+3/5v | | 6p+2+p−3=8p− | | o/19=-9 | | 5(+3)=2x+3 | | 7(p+3)+9=2p-10 |